Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37292765

RESUMO

Overexpression of repetitive elements is an emerging hallmark of human cancers 1 . Diverse repeats can mimic viruses by replicating within the cancer genome through retrotransposition, or presenting pathogen-associated molecular patterns (PAMPs) to the pattern recognition receptors (PRRs) of the innate immune system 2-5 . Yet, how specific repeats affect tumor evolution and shape the tumor immune microenvironment (TME) in a pro- or anti-tumorigenic manner remains poorly defined. Here, we integrate whole genome and total transcriptome data from a unique autopsy cohort of multiregional samples collected in pancreatic ductal adenocarcinoma (PDAC) patients, into a comprehensive evolutionary analysis. We find that more recently evolved S hort I nterspersed N uclear E lements (SINE), a family of retrotransposable repeats, are more likely to form immunostimulatory double-strand RNAs (dsRNAs). Consequently, younger SINEs are strongly co-regulated with RIG-I like receptor associated type-I interferon genes but anti-correlated with pro-tumorigenic macrophage infiltration. We discover that immunostimulatory SINE expression in tumors is regulated by either L ong I nterspersed N uclear E lements 1 (LINE1/L1) mobility or ADAR1 activity in a TP53 mutation dependent manner. Moreover, L1 retrotransposition activity tracks with tumor evolution and is associated with TP53 mutation status. Altogether, our results suggest pancreatic tumors actively evolve to modulate immunogenic SINE stress and induce pro-tumorigenic inflammation. Our integrative, evolutionary analysis therefore illustrates, for the first time, how dark matter genomic repeats enable tumors to co-evolve with the TME by actively regulating viral mimicry to their selective advantage.

2.
Sci Prog ; 106(1): 368504221148843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36650980

RESUMO

Heat shock protein 70 (HSP70) genes play essential roles in guarding plants against abiotic stresses, including heat, drought, and salt. In this study, the SlHSP70 gene family in tomatoes has been characterized using bioinformatic tools. 25 putative SlHSP70 genes in the tomato genome were found and classified into five subfamilies, with multi-subcellular localizations. Twelve pairs of gene duplications were identified, and segmental events were determined as the main factor for the gene family expansion. Based on public RNA-seq data, gene expression analysis identified the majority of genes expressed in the examined organelles. Further RNA-seq analysis and then quantitative RT-PCR validation showed that many SlHSP70 members are responsible for cellular feedback to heat, drought, and salt treatments, in which, at least five genes might be potential key players in the stress response. Our results provided a thorough overview of the SlHSP70 gene family in the tomato, which may be useful for the evolutionary and functional analysis of SlHSP70 under abiotic stress conditions.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Choque Térmico HSP70/genética , Filogenia , Estresse Fisiológico/genética , Perfilação da Expressão Gênica
3.
Mol Pharm ; 19(6): 1892-1905, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35604765

RESUMO

Lipid nanoparticles (LNPs) are the leading technology for RNA delivery, given the success of the Pfizer/BioNTech and Moderna COVID-19 mRNA (mRNA) vaccines, and small interfering RNA (siRNA) therapies (patisiran). However, optimization of LNP process parameters and compositions for larger RNA payloads such as self-amplifying RNA (saRNA), which can have complex secondary structures, have not been carried out. Furthermore, the interactions between process parameters, critical quality attributes (CQAs), and function, such as protein expression and cellular activation, are not well understood. Here, we used two iterations of design of experiments (DoE) (definitive screening design and Box-Behnken design) to optimize saRNA formulations using the leading, FDA-approved ionizable lipids (MC3, ALC-0315, and SM-102). We observed that PEG is required to preserve the CQAs and that saRNA is more challenging to encapsulate and preserve than mRNA. We identified three formulations to minimize cellular activation, maximize cellular activation, or meet a CQA profile while maximizing protein expression. The significant parameters and design of the response surface modeling and multiple response optimization may be useful for designing formulations for a range of applications, such as vaccines or protein replacement therapies, for larger RNA cargoes.


Assuntos
COVID-19 , Nanopartículas , Amino Álcoois , COVID-19/terapia , Caprilatos , Decanoatos , Humanos , Lipossomos , Nanopartículas/química , RNA Mensageiro/metabolismo , RNA Interferente Pequeno
4.
Mol Pharm ; 19(4): 1047-1058, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35238565

RESUMO

The coronavirus disease of 2019 (COVID-19) pandemic launched an unprecedented global effort to rapidly develop vaccines to stem the spread of the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2). Messenger ribonucleic acid (mRNA) vaccines were developed quickly by companies that were actively developing mRNA therapeutics and vaccines for other indications, leading to two mRNA vaccines being not only the first SARS-CoV-2 vaccines to be approved for emergency use but also the first mRNA drugs to gain emergency use authorization and to eventually gain full approval. This was possible partly because mRNA sequences can be altered to encode nearly any protein without significantly altering its chemical properties, allowing the drug substance to be a modular component of the drug product. Lipid nanoparticle (LNP) technology required to protect the ribonucleic acid (RNA) and mediate delivery into the cytoplasm of cells is likewise modular, as are technologies and infrastructure required to encapsulate the RNA into the LNP. This enabled the rapid adaptation of the technology to a new target. Upon the coattails of the clinical success of mRNA vaccines, this modularity will pave the way for future RNA medicines for cancer, gene therapy, and RNA engineered cell therapies. In this review, trends in the publication records and clinical trial registrations are tallied to show the sharp intensification in preclinical and clinical research for RNA medicines. Demand for the manufacturing of both the RNA drug substance (DS) and the LNP drug product (DP) has already been strained, causing shortages of the vaccine, and the rise in development and translation of other mRNA drugs in the coming years will exacerbate this strain. To estimate demand for DP manufacturing, the dosing requirements for the preclinical and clinical studies of the two approved mRNA vaccines were examined. To understand the current state of mRNA-LNP production, current methods and technologies are reviewed, as are current and announced global capacities for commercial manufacturing. Finally, a vision is rationalized for how emerging technologies such as self-amplifying mRNA, microfluidic production, and trends toward integrated and distributed manufacturing will shape the future of RNA manufacturing and unlock the potential for an RNA medicine revolution.


Assuntos
COVID-19 , Vacinas contra COVID-19 , Humanos , Lipossomos , Nanopartículas , RNA Mensageiro/metabolismo , SARS-CoV-2/genética
6.
Alzheimers Dement (N Y) ; 7(1): e12130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33521236

RESUMO

INTRODUCTION: This study assessed the hypothesis that circulating human amylin (amyloid-forming) cross-seeds with amyloid beta (Aß) in early Alzheimer's disease (AD). METHODS: Evidence of amylin-AD pathology interaction was tested in brains of 31 familial AD mutation carriers and 20 cognitively unaffected individuals, in cerebrospinal fluid (CSF) (98 diseased and 117 control samples) and in genetic databases. For functional testing, we genetically manipulated amylin secretion in APP/PS1 and non-APP/PS1 rats. RESULTS: Amylin-Aß cross-seeding was identified in AD brains. High CSF amylin levels were associated with decreased CSF Aß42 concentrations. AD risk and amylin gene are not correlated. Suppressed amylin secretion protected APP/PS1 rats against AD-associated effects. In contrast, hypersecretion or intravenous injection of human amylin in APP/PS1 rats exacerbated AD-like pathology through disruption of CSF-brain Aß exchange and amylin-Aß cross-seeding. DISCUSSION: These findings strengthened the hypothesis of circulating amylin-AD interaction and suggest that modulation of blood amylin levels may alter Aß-related pathology/symptoms.

7.
Kidney Int ; 97(1): 143-155, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31739987

RESUMO

In the setting of type-2 diabetes, there are declines of structural stability and functionality of blood capillaries and red blood cells (RBCs), increasing the risk for microcirculatory disturbances. Correcting hyperglycemia is not entirely effective at reestablishing normal cellular metabolism and function. Therefore, identification of pathological changes occurring before the development of overt hyperglycemia may lead to novel therapeutic targets for reducing the risk of microvascular dysfunction. Here we determine whether RBC-capillary interactions are altered by prediabetic hypersecretion of amylin, an amyloid forming hormone co-synthesized with insulin, and is reversed by endothelial cell-secreted epoxyeicosatrienoic acids. In patients, we found amylin deposition in RBCs in association with type-2 diabetes, heart failure, cancer and stroke. Amylin-coated RBCs have altered shape and reduced functional (non-glycated) hemoglobin. Amylin-coated RBCs administered intravenously in control rats upregulated erythropoietin and renal arginase expression and activity. We also found that diabetic rats expressing amyloid-forming human amylin in the pancreas (the HIP rat model) have increased tissue levels of hypoxia-inducible transcription factors, compared to diabetic rats that express non-amyloid forming rat amylin (the UCD rat model). Upregulation of erythropoietin correlated with lower hematocrit in the HIP model indicating pathologic erythropoiesis. In the HIP model, pharmacological upregulation of endogenous epoxyeicosatrienoic acids protected the renal microvasculature against amylin deposition and also reduced renal accumulation of HIFs. Thus, prediabetes induces dysregulation of amylin homeostasis and promotes amylin deposition in RBCs and the microvasculature altering RBC-capillary interaction leading to activation of hypoxia signaling pathways and pathologic erythropoiesis. Hence, dysregulation of amylin homeostasis could be a therapeutic target for ameliorating diabetic vascular complications.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Angiopatias Diabéticas/patologia , Eritrócitos/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Microvasos/patologia , Adulto , Amiloide/metabolismo , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/genética , Angiopatias Diabéticas/sangue , Modelos Animais de Doenças , Eicosanoides/metabolismo , Eritropoese , Eritropoetina/metabolismo , Feminino , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Rim/irrigação sanguínea , Rim/patologia , Masculino , Microcirculação , Pessoa de Meia-Idade , Ratos , Estudos Retrospectivos
8.
J Lipid Atheroscler ; 8(2): 144-151, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32821704

RESUMO

Type 2 diabetes (T2D) increases the risk for cerebrovascular disease (CVD) and dementia. The underlying molecular mechanisms remain elusive, which hampers the development of treatment or/and effective prevention strategies. Recent studies suggest that dyshomeostasis of amylin, a satiety hormone that forms pancreatic amyloid in patients with T2D, promotes accumulation of amylin in cerebral small blood vessels and interaction with Alzheimer's disease (AD) pathology. Overexpression of human amylin in rodents (rodent amylin does not form amyloid) leads to late-life onset T2D and neurologic deficits. In this Review, we discuss clinical evidence of amylin pathology in CVD and AD and identify critical characteristics of animal models that could help to better understand molecular mechanisms underlying the increased risk of CVD and AD in patients with prediabetes or T2D.

9.
Brain Pathol ; 29(4): 485-501, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30506549

RESUMO

Bridging integrator 1 (BIN1) is the most significant late-onset Alzheimer's disease (AD) susceptibility locus identified via genome-wide association studies. BIN1 is an adaptor protein that regulates membrane dynamics in the context of endocytosis and membrane remodeling. An increase in BIN1 expression and changes in the relative levels of alternatively spliced BIN1 isoforms have been reported in the brains of patients with AD. BIN1 can bind to Tau, and an increase in BIN1 expression correlates with Tau pathology. In contrast, the loss of BIN1 expression in cultured cells elevates Aß production and Tau propagation by insfluencing endocytosis and recycling. Here, we show that BIN1 accumulates adjacent to amyloid deposits in vivo. We found an increase in insoluble BIN1 and a striking accrual of BIN1 within and near amyloid deposits in the brains of multiple transgenic models of AD. The peri-deposit aberrant BIN1 localization was conspicuously different from the accumulation of APP and BACE1 within dystrophic neurites. Although BIN1 is highly expressed in mature oligodendrocytes, BIN1 association with amyloid deposits occurred in the absence of the accretion of other oligodendrocyte or myelin proteins. Finally, super-resolution microscopy and immunogold electron microscopy analyses highlight the presence of BIN1 in proximity to amyloid fibrils at the edges of amyloid deposits. These results reveal the aberrant accumulation of BIN1 is a feature associated with AD amyloid pathology. Our findings suggest a potential role for BIN1 in extracellular Aß deposition in vivo that is distinct from its well-characterized function as an adaptor protein in endocytosis and membrane remodeling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/patologia , Proteínas Nucleares/metabolismo , Placa Amiloide/patologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/fisiologia , Proteínas Nucleares/fisiologia , Placa Amiloide/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/fisiologia , Proteínas tau/metabolismo
10.
Ann Neurol ; 82(2): 208-222, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28696548

RESUMO

OBJECTIVE: The brain blood vessels of patients with type 2 diabetes and dementia have deposition of amylin, an amyloidogenic hormone cosecreted with insulin. It is not known whether vascular amylin deposition is a consequence or a trigger of vascular injury. We tested the hypothesis that the vascular amylin deposits cause endothelial dysfunction and microvascular injury and are modulated by amylin transport in the brain via plasma apolipoproteins. METHODS: Rats overexpressing amyloidogenic (human) amylin in the pancreas (HIP rats) and amylin knockout (AKO) rats intravenously infused with aggregated amylin were used for in vivo phenotyping. We also carried out biochemical analyses of human brain tissues and studied the effects of the aggregated amylin on endothelial cells ex vivo. RESULTS: Amylin deposition in brain blood vessels is associated with vessel wall disruption and abnormal surrounding neuropil in patients with type 2 diabetes and dementia, in HIP rats, and in AKO rats infused with aggregated amylin. HIP rats have brain microhemorrhages, white matter injury, and neurologic deficits. Vascular amylin deposition provokes loss of endothelial cell coverage and tight junctions. Intravenous infusion in AKO rats of human amylin, or combined human amylin and apolipoprotein E4, showed that amylin binds to plasma apolipoproteins. The intravenous infusion of apolipoprotein E4 exacerbated the brain accumulation of aggregated amylin and vascular pathology in HIP rats. INTERPRETATION: These data identify vascular amylin deposition as a trigger of brain endothelial dysfunction that is modulated by plasma apolipoproteins and represents a potential therapeutic target in diabetes-associated dementia and stroke. Ann Neurol 2017;82:208-222.


Assuntos
Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/efeitos adversos , Leucoencefalopatias/induzido quimicamente , Leucoencefalopatias/patologia , Microvasos/metabolismo , Idoso de 80 Anos ou mais , Animais , Apolipoproteína E4/administração & dosagem , Apolipoproteína E4/efeitos adversos , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Sinergismo Farmacológico , Endotélio/metabolismo , Técnicas de Inativação de Genes , Humanos , Hemorragias Intracranianas/induzido quimicamente , Polipeptídeo Amiloide das Ilhotas Pancreáticas/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Leucoencefalopatias/sangue , Leucoencefalopatias/complicações , Imageamento por Ressonância Magnética , Aprendizagem em Labirinto/efeitos dos fármacos , Destreza Motora/efeitos dos fármacos , Neuroimagem , Pâncreas/metabolismo , Ratos , Ratos Mutantes , Junções Íntimas/efeitos dos fármacos
11.
J Alzheimers Dis ; 53(1): 259-72, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27163815

RESUMO

Amylin is a hormone synthesized and co-secreted with insulin by pancreatic ß-cells that crosses the blood-brain barrier and regulates satiety. Amylin from humans (but not rodents) has an increased propensity to aggregate into pancreatic islet amyloid deposits that contribute to ß-cell mass depletion and development of type-2 diabetes by inducing oxidative stress and inflammation. Recent studies demonstrated that aggregated amylin also accumulates in brains of Alzheimer's disease (AD) patients, preponderantly those with type-2 diabetes. Here, we report that, in addition to amylin plaques and mixed amylin-Aß deposits, brains of diabetic patients with AD show amylin immunoreactive deposits inside the neurons. Neuronal amylin formed adducts with 4-hydroxynonenal (4-HNE), a marker of peroxidative membrane injury, and increased synthesis of the proinflammatory cytokine interleukin (IL)-1ß. These pathological changes were mirrored in rats expressing human amylin in pancreatic islets (HIP rats) and mice intravenously injected with aggregated human amylin, but not in hyperglycemic rats secreting wild-type non-amyloidogenic rat amylin. In cultured primary hippocampal rat neurons, aggregated amylin increased IL-1ß synthesis via membrane destabilization and subsequent generation of 4-HNE. These effects were blocked by membrane stabilizers and lipid peroxidation inhibitors. Thus, elevated circulating levels of aggregated amylin negatively affect the neurons causing peroxidative membrane injury and aberrant inflammatory responses independent of other confounding factors of diabetes. The present results are consistent with the pathological role of aggregated amylin in the pancreas, demonstrate a novel contributing mechanism to neurodegeneration, and suggest a direct, potentially treatable link of type-2 diabetes with AD.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Interleucina-1beta/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Aldeídos/metabolismo , Doença de Alzheimer/complicações , Animais , Animais Recém-Nascidos , Depressores do Apetite/metabolismo , Depressores do Apetite/farmacologia , Glicemia/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/complicações , Modelos Animais de Doenças , Jejum/fisiologia , Feminino , Hipocampo/citologia , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Ligadura , Peroxidação de Lipídeos/fisiologia , Masculino , Camundongos , Ratos , Ratos Transgênicos
12.
Expert Rev Proteomics ; 12(6): 575-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26503000

RESUMO

Type II diabetes increases the risk for cognitive decline via multiple traits. Amylin is a pancreatic hormone that has amyloidogenic and cytotoxic properties similar to the amyloid-ß peptide. The amylin hormone is overexpressed in individuals with pre-diabetic insulin resistance or obesity leading to amylin oligomerization and deposition in pancreatic islets. Amylin oligomerization was implicated in the apoptosis of the insulin-producing ß-cells. Recent studies showed that brain tissue from diabetic patients with cerebrovascular dementia or Alzheimer's disease contains significant deposits of oligomerized amylin. It has also been reported that the brain amylin deposition reduced exploratory drive, recognition memory and vestibulomotor function in a rat model that overexpresses human amylin in the pancreas. These novel findings are reviewed here and the hypothesis that type II diabetes is linked with cognitive decline by amylin accumulation in the brain is proposed. Deciphering the impact of hyperamylinemia on the brain is critical for both etiology and treatment of dementia.


Assuntos
Demência/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Animais , Demência/etiologia , Diabetes Mellitus Tipo 2/complicações , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...